ECEN 351 Final Project: Register File
Scott Madeux
[bookmark: _GoBack]Lab Partners: Brett Sinden and Patrick Hopman
4/11/2019
Introduction
This project involved designing and laying out a 1 bit register file with 8 memory locations. The three major parts of this project were to design a 3 to 8 decoder, a block of a 1-bit registers, and an 8 to 1 multiplexer. Below is a rough outline of our circuit.
[image:]
Figure 1: 1-bit register file with 8 memory locations
Patrick, Brett, and I each took one of the three major parts of the circuit mentioned about and created a transistor level circuit in LTspice. After we had that we each created a layout of that circuit in glade using the inverters, MUXes, etc. in standard cell library provided to us. The last step was to take the parts we had created individually and connect them together to form our register file.
Simulation in LTspice
We chose to do our simulation of the register file in LTspice. Here is what our different parts of the circuit looked like and how we tested the whole thing out:
3 to 8 Decoder
Brett created the schematic for the 3 to 8 decoder that takes in a 3-bit binary value and activates the correct register that should have data loaded into it.
[image:]
Figure 2: 3 to 8 Decoder Schematic
Register Block
I designed the block of 8 1-bit registers. In order to do this, I had to create a 1-bit register by connecting a 2 to 1 MUX to a flip-flop as pictured below.
[image:]
Figure 3: 1-bit register using a 2 to 1 MUX and a flip-flop
Next, I put 8 of those 1-bit registers together connecting all of the Din inputs to the same input and having separate load inputs. I also added buffers for the clock and data input signals. Since buffers I used for this were going to have to drive all 8 registers, I made them 2 times as large as my smallest inverter.
[image:]
Figure 4: 8 1-bit registers with clk and Din input signals buffered
8 to 1 Multiplexer
Patrick created an 8 to 1 multiplexer by first creating both a 4 to 1 and 2 to 1 from transmission gates and inverters, then combining the two as pictured below. It’s difficult to see on the layout, but the sel0 and sel1 inputs are going into both 4 to 1 multiplexers.
[image:]
Figure 5: 8 to 1 MUX using two 4 to 1 MUXes and a 2 to 1 MUX
Register File
Here is the LTspice schematic of the entire register file:
[image:]
Figure 6: Register file schematic with LTspice directives for testing
Now comes the hard part of figuring out if everything actually works. To do this, I ran wrote either a 1 or a zero to each address in the register file and then turned off the write enable and stepped through each address again to make sure that the output matched what I had just loaded into the registers. On the screenshot below, the green line is the address that is being selected. In order to better visualize the 3 address lines, I used this equation in LTspice, which gave me the actual address number that was being selected:

This equation converts the high and low signals of the three address lines into a base 10 number. I made a composite of two images to make things easier to see. The red line is the data being loaded into the registers and the blue line is the data being read out. 3 volts is a high signal and 0 volts is a low.

[image:][image:]

Figure 7: LTspice waveform of register file test
	Register #
	Data

	0
	1

	1
	0

	2
	1

	3
	0

	4
	0

	5
	1

	6
	0

	7
	1

Table 1: Data loaded into each register for test
Table 1 above shows the data that was loaded into the registers for the test. We can clearly see from the blue output line in Figure 7 that we are getting the same values we loaded in when we step through the addresses.
Layout in Glade
3 to 8 Decoder
Brett created the layout for the 3 to 8 decoder in Glade. I’ve included a screenshot of the entire thing plus a close up shot.
[image:]
Figure 8: 3 to 8 decoder layout in Glade
[image:]
Figure 9: Closeup of the 3 to 8 decoder layout
Register Block
I created the layout for the block of 8 registers used in the register file. Below is the layout for one of those registers.
[image:]
Figure 10: 1-bit register file layout in Glade
This layout was pretty simple to create I used a 2 to 1 MUX along with a flip-flop and connected them the same way they were connected in my LTspice schematic shown in Figure 3. The only difficulty I did have was that the labels for the data inputs on the MUX were switched so I had to connect “In1” to the output of the flip-flop instead of “In0” as shown in the LTspice schematic.
[image:]
Figure 11: Block of 8 1-bit registers with buffered clock and data lines
It’s very difficult to see anything in this screenshot of the entire block of registers so the screenshot below is zoomed in to show the clock and data line buffer as well as one of the registers.
The 3 to 8 decoder is both DRC and LVS clean.

[image:]
Figure 12: Closeup of the register block layout
The two inverters on the top left form the buffer for the data line and the one on the right forms the buffer for the clock. The register beneath them is the register corresponding to address 0.
The register block is both DRC and LVS clean.
8 to 1 Multiplexer
Here is the 8 to 1 MUX layout that Patrick created using two 4 to 1 MUXes and a 2 to 1 MUX.
[image:]
Figure 13: Glade schematic of 8 to 1 multiplexer
The 8 to 1 multiplexer is both DRC and LVS clean.
Register File
[image:]
Figure 14: Glade register file layout
Above is the layout for the entire register file. The decoder used in this screenshot is slightly different than the one Brett made. We were having some troubles with it and I ended up making a new version of the decoder. The register file had no DRC errors. I was able to get a clean LVS with only the decoder and the register block connected to each other, but I still got a few errors when I added the 8 to 1 MUX. These errors could be worked out with some more time. Here is a screenshot of part of the LVS error file.
[image:]
Figure 15: LVS errors for register file
Conclusion
There were definitely some challenges when it came to having multiple people working on the same design. One was that we all have a little different idea of how the design should look and how we like to layout our circuits in glade. It took a little more effort to get our different parts to match up so that things fit together nicely. A second challenge was that there are sometimes slightly different ways to implement a circuit and there can be mix-ups if one person is doing the schematic and another person is doing the layout. We ran into this when doing the 8 to 1 MUX. A version we had created in LTspice was using 3 2 to 1 MUXes in the 4 to 1 MUX while the Glade version was only using transmission gates and inverters to for the 4 to 1 MUX. This led to the two not quite matching up when the LVS was run.
I probably spent a little too much time on this lab, but I definitely learned a lot and really enjoyed laying out a more complicated circuit. I like the idea of working in teams to create a very large circuit. One thing I think would have helped is if we were all a little more experienced and had more time in our day to sit down together and collaborate. I also loved using the standard cells. It added a little bit of abstraction that made things easier to put together. I can see how this would be extremely valuable when designing a very large IC. I can’t imagine having to try and layout each individual transistor separately.
2
image1.png
Write [
Decoder L

Register write signals

Reg0

Reg1

Reg2

Reg3

Reg4

Reg5

+¥ v ¥ Yy y

Regb

m=3

!

regWE

Addr

Reg7
n

Dataln

|

clk

DataOut

image2.png
[LTspice XVII - [Decoder] - X
4, File Edit Hierarchy View Simulate Tools Window Help

P& EHTFD QAR EEaR s bo#H o8¢ SDFs3 XDV Q

4 2_1_MUX + 4_.1_MUX % Decoder 4 decoder_and_registers > decoder_and_registers % decoder_and_registers_top % Decoder_top % register_fle % register_file_top

B

P

"‘TJ vad-) -
5 L Lo
vdd—‘

g
H
A

i
i

yAi
\

g

L5

m1

iy
{ ‘

YT

Ready

430PM
QO Type here to search 4/10/2019

image3.png
B UTspice XVl - [1_bit reg]
il ot erarchy View Smuste Tools Window tielp

P& HTA0RAQR| IERE $BENOE LD 3 ¥

 Tbieg X 21MUX £ 41MUX < 6.1MUX < 0 1eg block & Decodar > decodsr_and_regisers 4. dacoder_and_segsiers & dacoder

An op

d_ogisters p_, Decodor op 4, rogistorle <, rogistor_fle_lop

o

image4.png
[LTspice XVII - [8_reg_block] -
4, File Edit Hierarchy View Simulate Tools Window Help

P& EHRFD QAR EEaR +sb0#H o8B 3 ¥D A op

€ 2.1_MUX 4 41_MUX 4 81_MUX % 8_reg_block « Decoder « decoder_and_registers T decoder_and_registers 4, decoder_and_registers_top 4, Decoder_top 4 register_fle 4 register_fie_top

436PM
H QO Type here to search 40019

image5.png
[LTspice Xvil - (8.1.MUX] o
A File Edit Hierarchy View Simuate Tools Window Help

P& EHT /AR ERE s2eH o8003 XDD0 An op

€ 21MUX € 410X & S1MUX % Dacoder . decoder_and_tagisters - dacoder_and_registers L, decodsr_and_registers 1op & Decoder_top & tegister fla 4 register le_top

In0—

n QO Type here to search

image6.png
[LTspice XVII - [register_file_test] - X
4, File Edit Hierarchy View Simulate Tools Window Help
PEEHTFINQAAAKBRIERR $2ERAS8 LD 3 XDID0D An op

£ register_file_test % Register_File_test % register_fle_test

k-]
vdd 3
§ Dout®
Doutl
Dout2
Dout3 out
Dout4
Dout5
£ ™
a §z1 Dout7
Dirwssclk %

.include C5N_models.txt

.tran 400n

vdd vdd 0 3

vss vss 0 0

vclk clk 0 pulse 0 3 10n 100p 100p 9.9n 20n
vaddroO sel0 0 pulse 0 3 20n 100p 100p 19.9n 40n
vaddrl sell 0 pulse 0 3 40n 100p 100p 39.9n 80n
vaddr2 sel2 0 pulse 0 3 80n 100p 100p 79.9n 160n
vwe WE 0 pulse 0 3 On 100p 100p 160n 400n
vdata Din 0 pwl On 3v 20n 3v 20.1n Ov 40n Ov 40.1n 3v 60n 3v 60.1n Ov 100n Ov 100.1n 3v 120n 3v 120.1n Ov 140n Ov 140.1n 3v

614PM
H QO Type here to search @ 402019

image7.png
" (V(S610)/3) 1 +(V(sel1)/3)"2+{V(sel2)3)"4 V(out)

7.0V

6.3V

5.6V

4.9V

4.2V

3.5V

2.8V

2.1V

1.4V~

0.7V

0.0V

T T T
120ns 160ns 200ns 240ns 280ns 320ns 360ns 400ns

gom e > @K E B O @ Aﬁq’t:;?/:xgm

image8.png
7.0V

(V(sel0)/3)*1+(V(sel1)/3)*2+(V(sel2)/3)"4 V(din)

6.3V

5.6V

4.9V

4.2V

3.5V

2.8V

2.1V

1.4V~

0.7V

0.0V

-0.7V-

T T T T
80ns 120ns 160ns 200ns 240ns 280ns 320ns 360ns 400ns

gom e > @ E B O @ N Aﬁq’;:o};;:gm

image9.png
Window Help

buffer
buffer_
buffer

7:07 PM o
4/10/2019

o search i % @

image10.png
FIElPITI®

T
: f
R Taa oo
[s B
T i
B
:
: ;
E- : -
o T 3N W R
R AR DUl
@ G oo G600
o] NTAANE NN Y
: S
:

=

7:25PM
4/10/2019

0

7

<

image11.png
Edit Create
A=
B AR : == DO

-_file m

7:08PM
A B
e 4/10/2019

image12.png
(59 B B

.
L

i

e

R
B

T

[HET i
L iy
[Silsraici
e ot
[] B BRI
U By

o

e A e
L oSt e e

[e g
BE Ll

Er e e
)

i e e

mux8tol
w Tay

— s moE > 0 = B

%

b
buffer
buffer_
buffer

p_Flop
DecoderV/
FFD
mux8to1_’
r_file

7:07 PM
4/10/2019

=

image13.png
FIElPITI®

Lib

=

7:18PM
4/10/2019

0

7

<

image14.png
e

File View Edit C

(=115
> AR rto

=

0

7:07 PM
4/10/2019

=

image15.png
de

File View Edit C

2]

> AR

o o Sl
e

s AT L

[i T

e B

e B 2 Sheke T T)

(BT = s

[

- I I
Ik EEE

e

i

et |

e s

R

[l i

L -

L e R
i [i
g = frfEiy
[e i
TR (S
FOE (Tl e

[it e
[haE EoEe

e
L
o
E!

B pE

N —— o omE > @ EF B

11:39 PM
4/11/2019 L5

AR 7 Wx

image16.png
Netlist errors : register_file_extracted.cdl

42 1 NETS do not matcl
43 NET "n2" 2@ connections

45 2 DEVICES do not match:
46 DEVICE P: (inst MM935) [g] n135 :: [s,d,sub] n2, n139, n4
47 DEVICE N: (inst MM698) [g] nl17 :: [s,d,sub] nl139, n2, nl4

50 Netlist errors
51 -
52 2 NETS do not matc
53 NET "sele" 14 connections

54 NET "Ne13" 6 connections

33 P: (inst M20/XX2/XX14/XX2) [g] /XX2/NC_@6 :: [s,d,sub] Ne13, vdd, vdd

56 N: (inst M1/XX2/XX14/XX1) [g] /XX2/XX14/XX1/selb :: [s,d,sub] /XX2/XX14/XX1/pre_buff, NO13, vss
57 P: (inst M2/XX2/XX14/XX1) [g] /XX2/XX14/XX1/selbb :: [s,d,sub] N@13, /XX2/XX14/XX1/pre_buff, vdd
58 N: (inst M3/XX3/XX2) [g] /XX3/XX2/sel@bb [s,d,sub] /XX3/XX2/Neel1, Nei3, vss

59 P: (inst M4/XX3/XX2) [g] /XX3/XX2/sel@b [s.d,sub] Ne13, /XX3/XX2/Neel, vdd

60 N: (inst M23/XX2/XX14/XX2) [g] /XX2/NC_@6 :: [s,d,sub] N@13, vss, vss

register_file_top.net_flat

62 2 DEVICES do not match:
63 DEVICE P: (inst M4/XX3/XX2) [g] /XX3/XX2/seléb :: [s,d,sub] N@13, /XX3/XX2/Neel, vdd

64 DEVICE N:
65 (inst M3/XX3/XX2) [g] /XX3/XX2/sel@bb :: [s,d,sub] /XX3/XX2/N@e1l, N@13, vss
66

67 2 devices and @ nets written to C:\Users\scott\OneDrive\Documents\School\Winter 2019\ECEN 351 VLSI Design\Final Project\LTspice
Files\register_file.err

68
69 Gemini completed at 23:36:47 on 11/04/2019
70

Plain Text

HomoE > @ K s @ © E Z R A |

